16 research outputs found

    Evidence against a glass transition in the 10-state short range Potts glass

    Full text link
    We present the results of Monte Carlo simulations of two different 10-state Potts glasses with random nearest neighbor interactions on a simple cubic lattice. In the first model the interactions come from a \pm J distribution and in the second model from a Gaussian one, and in both cases the first two moments of the distribution are chosen to be equal to J_0=-1 and Delta J=1. At low temperatures the spin autocorrelation function for the \pm J model relaxes in several steps whereas the one for the Gaussian model shows only one. In both systems the relaxation time increases like an Arrhenius law. Unlike the infinite range model, there are only very weak finite size effects and there is no evidence that a dynamical or a static transition exists at a finite temperature.Comment: 9 pages of Latex, 4 figure

    Critical Behavior of Three-Dimensional Disordered Potts Models with Many States

    Get PDF
    We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower pp values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat. Mec

    Frequency-domain study of relaxation in a spin glass model for the structural glass transition

    Full text link
    We have computed the time-dependent susceptibility for the finite-size mean-field Random Orthogonal model (ROM). We find that for temperatures above the mode-coupling temperature the imaginary part of the susceptibility χ(ν)\chi''(\nu) obeys the scaling forms proposed for glass-forming liquids. Furthermore, as the temperature is lowered the peak frequency of χ\chi'' decreases following a Vogel-Fulcher law with a critical temperature remarkably close to the known critical temperature TcT_c where the configurational entropy vanishes.Comment: 7 pages, 4 figures, epl LaTeX packag

    The mean field infinite range p=3 spin glass: equilibrium landscape and correlation time scales

    Full text link
    We investigate numerically the dynamical behavior of the mean field 3-spin spin glass model: we study equilibrium dynamics, and compute equilibrium time scales as a function of the system size V. We find that for increasing volumes the time scales τ\tau increase like lnτV\ln \tau \propto V. We also present an accurate study of the equilibrium static properties of the system.Comment: 6 pages, 9 figure

    Finite-size scaling at the dynamical transition of the mean-field 10-state Potts glass

    Full text link
    We use Monte Carlo simulations to study the static and dynamical properties of a Potts glass with infinite range Gaussian distributed exchange interactions for a broad range of temperature and system size up to N=2560 spins. The results are compatible with a critical divergence of the relaxation time tau at the theoretically predicted dynamical transition temperature T_D, tau \propto (T-T_D)^{-\Delta} with Delta \approx 2. For finite N a further power law at T=T_D is found, tau(T=T_D) \propto N^{z^\star} with z^\star \approx 1.5 and for T>T_D dynamical finite-size scaling seems to hold. The order parameter distribution P(q) is qualitatively compatible with the scenario of a first order glass transition as predicted from one-step replica symmetry breaking schemes.Comment: 8 pages of Latex, 4 figure

    Statistical mechanics of glass transition in lattice molecule models

    Full text link
    Lattice molecule models are proposed in order to study statistical mechanics of glass transition in finite dimensions. Molecules in the models are represented by hard Wang tiles and their density is controlled by a chemical potential. An infinite series of irregular ground states are constructed theoretically. By defining a glass order parameter as a collection of the overlap with each ground state, a thermodynamic transition to a glass phase is found in a stratified Wang tiles model on a cubic lattice.Comment: 18 pages, 8 figure

    Energy landscape, two-level systems and entropy barriers in Lennard-Jones clusters

    Full text link
    We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clusters containing up to 80 argon atoms and to locate many pairs of minima with the right characteristics to form two-level systems (TLS). The true TLS are singled out by calculating the ground-state tunneling splitting. The entropic contribution to all barriers is evaluated and discussed.Comment: 4 pages, RevTex, 2 PostScript figure

    Dynamical Critical Phenomena in three-dimensional Heisenberg Spin Glasses

    Full text link
    Spin-glass (SG) and chiral-glass (CG) orderings in three dimensional (3D) Heisenberg spin glass with and without magnetic anisotropy are studied by using large-scale off-equilibrium Monte Carlo simulations. A characteristic time of relaxation, which diverges at a transition temperature in the thermodynamic limit, is obtained as a function of the temperature and the system size. Based on the finite-size scaling analysis for the relaxation time, it is found that in the isotropic Heisenberg spin glass, the CG phase transition occurs at a finite temperature, while the SG transition occurs at a lower temperature, which is compatible with zero. Our results of the anisotropic case support the chirality scenario for the phase transitions in the 3D Heisenberg spin glasses.Comment: 9 pages, 19 figure

    Predictive power of MCT: Numerics and Finite size scaling for a mean field spin glass

    Full text link
    The aim of this paper is to test numerically the predictions of the Mode Coupling Theory (MCT) of the glass transition and study its finite size scaling properties in a model with an exact MCT transition, which we choose to be the fully connected Random Orthogonal Model. Surprisingly, some predictions are verified while others seem clearly violated, with inconsistent values of some MCT exponents. We show that this is due to strong pre-asymptotic effects that disappear only in a surprisingly narrow region around the critical point. Our study of Finite Size Scaling (FSS) show that standard theory valid for pure systems fails because of strong sample to sample fluctuations. We propose a modified form of FSS that accounts well for our results. {\it En passant,} we also give new theoretical insights about FSS in disordered systems above their upper critical dimension. Our conclusion is that the quantitative predictions of MCT are exceedingly difficult to test even for models for which MCT is exact. Our results highlight that some predictions are more robust than others. This could provide useful guidance when dealing with experimental data.Comment: 37 pages, 19 figure

    Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence

    Full text link
    This review reports on the research done during the past years on violations of the fluctuation-dissipation theorem (FDT) in glassy systems. It is focused on the existence of a quasi-fluctuation-dissipation theorem (QFDT) in glassy systems and the currently supporting knowledge gained from numerical simulation studies. It covers a broad range of non-stationary aging and stationary driven systems such as structural-glasses, spin-glasses, coarsening systems, ferromagnetic models at criticality, trap models, models with entropy barriers, kinetically constrained models, sheared systems and granular media. The review is divided into four main parts: 1) An introductory section explaining basic notions related to the existence of the FDT in equilibrium and its possible extension to the glassy regime (QFDT), 2) A description of the basic analytical tools and results derived in the framework of some exactly solvable models, 3) A detailed report of the current evidence in favour of the QFDT and 4) A brief digression on the experimental evidence in its favour. This review is intended for inexpert readers who want to learn about the basic notions and concepts related to the existence of the QFDT as well as for the more expert readers who may be interested in more specific results.Comment: 120 pages, 37 figures. Topical review paper . Several typos and misprints corrected, new references included and others updated. to be published in J. Phys. A (Math. Gen.
    corecore